On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing.

نویسندگان

  • Kai Zhang
  • Bradley Dice
  • Yanhui Liu
  • Jan Schroers
  • Mark D Shattuck
  • Corey S O'Hern
چکیده

The likelihood that an undercooled liquid vitrifies or crystallizes depends on the cooling rate R. The critical cooling rate R(c), below which the liquid crystallizes upon cooling, characterizes the glass-forming ability (GFA) of the system. While pure metals are typically poor glass formers with R(c)>10(12)K/s, specific multi-component alloys can form bulk metallic glasses (BMGs) even at cooling rates below R∼1 K/s. Conventional wisdom asserts that metal alloys with three or more components are better glass formers (with smaller R(c)) than binary alloys. However, there is currently no theoretical framework that provides quantitative predictions for R(c) for multi-component alloys. In this manuscript, we perform simulations of ternary hard-sphere systems, which have been shown to be accurate models for the glass-forming ability of BMGs, to understand the roles of geometric frustration and demixing in determining R(c). Specifically, we compress ternary hard sphere mixtures into jammed packings and measure the critical compression rate, below which the system crystallizes, as a function of the diameter ratios σ(B)/σ(A) and σ(C)/σ(A) and number fractions x(A), x(B), and x(C). We find two distinct regimes for the GFA in parameter space for ternary hard spheres. When the diameter ratios are close to 1, such that the largest (A) and smallest (C) species are well-mixed, the GFA of ternary systems is no better than that of the optimal binary glass former. However, when σ(C)/σ(A) ≲ 0.8 is below the demixing threshold for binary systems, adding a third component B with σ(C) < σ(B) < σ(A) increases the GFA of the system by preventing demixing of A and C. Analysis of the available data from experimental studies indicates that most ternary BMGs are below the binary demixing threshold with σ(C)/σ(A) < 0.8.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ti-based Bulk Metallic Glasses for Biomedical Applications

Biomedical materials can improve the life quality of a number of people each year. The range of applications includes such as joint and limb replacements, artificial arteries and skin, contact lenses, and dentures. So far the accepted biomaterials include metals, ceramics and polymers. The metallic biomaterials mainly contain stainless steel, Co-Cr alloys, Titanium and Ti-6Al-4V. Recently, bulk...

متن کامل

Fragility of iron-based glasses

Related Articles The electronic structure origin for ultrahigh glass-forming ability of the FeCoCrMoCBY alloy system J. Appl. Phys. 110, 033720 (2011) Enhancement of glass-forming ability and corrosion resistance of Zr-based Zr-Ni-Al bulk metallic glasses with minor addition of Nb J. Appl. Phys. 110, 023513 (2011) Structural origin underlying poor glass forming ability of Al metallic glass J. A...

متن کامل

Extraordinary plasticity of ductile bulk metallic glasses.

Shear bands generally initiate strain softening and result in low ductility of metallic glasses. In this Letter, we report high-resolution electron microscope observations of shear bands in a ductile metallic glass. Strain softening caused by localized shearing was found to be effectively prevented by nanocrystallization that is in situ produced by plastic flow within the shear bands, leading t...

متن کامل

A predictive structural model for bulk metallic glasses

Great progress has been made in understanding the atomic structure of metallic glasses, but there is still no clear connection between atomic structure and glass-forming ability. Here we give new insights into perhaps the most important question in the field of amorphous metals: how can glass-forming ability be predicted from atomic structure? We give a new approach to modelling metallic glass ...

متن کامل

“Role of atomic packing in glass forming ability and stability of ternary and some quaternary bulk metallic glasses”

In this work we study the influence of atomic packing efficiency on glass-forming ability of bulk (defined as 3-dimentional massive glassy articles with a size of not less than 1 mm in any dimension) metallic glasses by the analysis of a database of ternary and quaternary bulk metallic glasses. An extensive dataset on the composition and stability (critical thickness, glass-transition temperatu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 143 5  شماره 

صفحات  -

تاریخ انتشار 2015